Successful Operational Use of Renovate OTF for Selective Control of *Myriophyllum spicatum* (Eurasian watermilfoil) in Three New York Lakes: Saratoga, Lamoka, Waneta #### **Authors:** Mark Heilman, Ph.D., SePRO Corporation Marc Bellaud, Aquatic Control Technology Glenn Sullivan, Allied Biological Northeast Aquatic Plant Management Society 10th Anniversary Conference January 20, 2009 Successful Operational Use of Renovate OTF for Selective Control of *Myriophyllum spicatum* (Eurasian watermilfoil) in Three New York Lakes: Saratoga, Lamoka, Waneta #### **Overview**: Background on Renovate Renovate OTF: granular v. liquid Management Results: Saratoga Lake Lamoka and Waneta Lakes # Renovate* Use History in Northern US - EPA label in 2002 - Significant adoption for Eurasian watermilfoil (EWM) control in Midwest - MA GEIS in 2004, NY SEIS/SLN in 2007 - NE US Prior to 2008, use evaluated operationally primarily in Vermont - 2007: Introduction of Renovate OTF - 2008: First operational use of Renovate herbicide in New York. # Renovate* OTF On Target Formulation - Development Concept: A dry carrier for Renovate 3...10% ae triclopyr - Delivers Renovate to target broadleaf weeds - Maximizes herbicide concentration during critical exposure period (24 hrs) - Improved efficacy in flowing water or in areas with tremendous potential for dilution - Improved efficacy for spot treatment sites in larger lakes (i.e. shorelines, cove/bays, dock/marina areas) - Improved economics # Renovate* OTF On Target Formulation Advantages of granule vs. liquid... # 2008 Field Study **Objective:** Compare liquid vs. granule formulation technology dissipation and vertical distribution of residues. - Simultaneous deep water injection (40 foot hoses) vs. broadcast granule application - Liquid Rhodamine WT dye - Granule Renovate OTF - -No thermocline - –Limited plant density (<1 foot tall)</p> Sampling Schedule: 0, 0.5, 1, 2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 56, 64, 72, and 96 Hours After Treatment ### SePRO Formulation Technology Dissipation Study Summary - OTF residues higher in 80% of all samples - As % of dose applied, granules 4x greater than liquid - Significantly higher residues in "deeper" water following OTF application - Dissipation dramatically affected by edge effect and other internal currents - Exposures maintained with OTF #### 2008 Renovate OTF: New York - Three major treatments permitted in '08 - All funded in part by Aquatic Invasive Species Eradication Grants from NYSDEC - Saratoga Lake - Aquatic Control Technology - Saratoga Lake Protection and Improvement District and Saratoga Lake Association - The LA Group - Darrin Fresh Water Institute - SUNY Cobbleskill - Lamoka and Waneta Lakes - Allied Biological - Lamoka-Waneta Lakes Association - Cornell University - SUNY Brockport ### Saratoga Lake - 3,762 acres - Mean depth ~25 feet - Eutrophic with excellent fishery - Abundant, diverse macrophyte community - Eurasian milfoil found in 1970's and became dominant with major habitat/water-use impacts ### Saratoga Lake - Recent Milfoil Management History - Harvesting program '86 to present - Milfoil weevils introduced in late 90's - Sonar (fluridone) evaluations in 2000 and 2003 - Sonar treatment of southern bay in 2007 - Renovate OTF in '08-'09 ## Saratoga Lake 2008 OTF Treatment - May 27-30 by ACT - Target dose: 2.0 2.25 ppm - 66,920 lbs of OTF applied - Eduction system utilized Aquatic Research ## Saratoga Lake: '08 OTF Results - Herbicide Monitoring using FasTEST for Renovate (triclopyr) - On 6/19—22 Days after start of treatment (5/27)—herbicide levels had declined below 1 ppb. - Water quality maintained after treatment. - Visibility greater than 10 feet - Qualitative site assessment on July 11 (6 WAT) - no viable EWM in OTF treatment area...strong growth of natives - 4-5' sparse growth along western untreated shore...some apparent herbicide symptoms - August 6 (10 WAT) snorkel survey - Very isolated milfoil finds in treated zone amidst dense native vegetation - Healthy milfoil growth along western shore still not topped-out ### Saratoga Lake: '08 OTF Results - Full Vegetation Assessment via point-intercept rake toss method per NYSDEC Tier III - 80-m grid = 324 sample sites - Comparable surveys in 2004 & 2007 - Untreated - Sonar-treated ('07) - Renovate OTF-treated ('08) - Historical ('04) - EWM and Native Responses From Eichler and Boylen 2008 (DFWI) #### EWM Distribution in Saratoga Lake: 2007 - 2008 August 2007 August 2008 160 total sites EWM 80% - OTF zone EWM 20% - Sonar zone 324 total sites EWM 2% - OTF EWM 1% - Sonar EWM 26% - UNT From Eichler and Boylen 2008 (DFWI) Table 3. Percent frequency of occurrence of aquatic plant species in Saratoga Lake. | Species | All | Control | Treated | | |---------------------------|-------|---------|---------|--| | | | | | | | Myriophyllum spicatum | 13.0% | 25.9% | 3.2% | | | Ceratophyllum demersum | 59.0% | 61.9% | 56.8% | | | Zosterella dubia | 23.1% | 23.0% | 23.2% | | | Vallisneria americana | 30.6% | 29.5% | 31.4% | | | Najas guadalupensis | 30.9% | 38.8% | 24.9% | | | Elodea canadensis | 25.3% | 29.5% | 22.2% | | | Chara/Nitella | 6.8% | 1.4% | 10.8% | | | Potamogeton zosteriformes | 14.5% | 15.1% | 14.1% | | | Najas flexilis | 8.6% | 2.9% | 13.0% | | | Potamogeton perfoliatus | 5.9% | 0.7% | 9.7% | | | Lemna trisulca | 2.2% | 5.0% | 0.0% | | | Megalodonta beckii | 0.9% | 1.4% | 0.5% | | | Potamogeton illinoensis | 4.0% | 4.3% | 3.8% | | | Potamogeton praelongus | 2.8% | 2.2% | 3.2% | | | Potamogeton crispus | 5.6% | 1.4% | 8.6% | | | Potamogeton pusillus | 8.6% | 6.5% | 10.3% | | | Potamogeton gramineus | 0.3% | 0.0% | 0.5% | | | Nuphar luteum | 0.6% | 1.4% | 0.0% | | | Potamogeton amplifolius | 1.2% | 2.9% | 0.0% | | | Stuckenia pectinata | 2.5% | 1.4% | 3.2% | | | Nymphaea odorata | 0.6% | 0.7% | 0.5% | | | Potamogeton robbinsii | 0.3% | 0.7% | 0.0% | | OTF and Sonar # Frequency of Occurrence #### **Species Richness** Natives v. Exotics in Saratoga Lake: 2004, 2007, 2008 **Aquatic Research** From Eichler and Boylen 2008 (DFWI) ### Saratoga Lake: Summary - 2008 Renovate OTF treatment provided excellent selective control of EWM in target zone. - 2007 Sonar treatment shows good performance 1 YAT. - Native abundance and diversity has increased - Further progress should be made with '09 OTF. #### Lamoka and Waneta Lakes - Adjacent lakes in south-central New York - Lamoka Lake - 826 acres, mean depth = 20 feet - Waneta Lake - 781 acres, mean depth = 15 feet - Eutrophic...Secchi = 4-4.5 feet - EWM introduced ~mid 1980's - 2-Year Plan for EWM control ## Lamoka Renovate 2008 - 152 acres treated in northern basin - OTF - 24,460 lbs 108 A - 1.5 2.25 ppm target rates # Waneta Renovate 2008 - 111 acres treated with focus in north and south ends - OTF - 21,950 lbs - 1.5 2.25 ppm target rates # Lamoka - Waneta Renovate 2008 Allied Biological # Lamoka – Waneta Vegetation Assessment 2000-2008 - Initial surveys of both lakes by US Army Corps of Engineers (Dr. John Madsen) in 2000 - GPS Point-intercept approach using rake collection and representative biomass collection - Waneta 50% of littoral sites with EWM - Lamoka 77% of littoral sites with EWM - Waneta (Sonar): 2003, 2004, 2005 Surveys by Cornell University (Dr. Robert Johnson) - Lamoka and Waneta: 2006, 2008 again by Cornell...some additional sites requested by DEC and LWLA #### EWM Distribution Lamoka Lake 2006 v. 2008 #### North Basin Treatment Areas -70 sampling sites -2006: 64 sites with EWM -2008: No EWM detected -Snorkel Survey 8/4 found isolated decaying root crowns # EWM Distribution Waneta Lake 2006 v. 2008 #### **EWM Lake-Wide** 2008: 7 of 138 sites (5%) only 1 site in treated areas 2006: 50 of 120 sites (42%) From Johnson & Keith 2006 Johnson et al. 2008 (Cornell) #### Waneta Lake Species Occurrences Original 102 sites Native species per site 2000: 1.37 2003: 0.79 2004: 0.58 2005: 0.60 2006: 0.91 2008: 3.49 | Gainetig Nimo | C | 20 | 2006 | | 2008 | | |--|-----------------------|---------------|------|---------------|------|--| | Scientific Name | Common Name | Littoral Zone | | Littoral Zone | | | | | | (in 2000) | | (in 2000) | | | | | | FREQ | % | FREQ | % | | | Ceratophyllum demersum | coontail | 12 | 12 | 40 | 39 | | | Chara sp. | chara | 13 | 13 | 29 | 28 | | | Elodea canadensis | elodea | 2 | 2 | 79 | 77 | | | Fontanalis sp. | water moss | 0 | 0 | 0 | 0 | | | Lemna minor | duckweed | 0 | 0 | 0 | 0 | | | Lemna trisulca | star duckweed | 0 | 0 | 4 | 4 | | | Myriophyllum spicatum | Eurasian watermilfoil | 50 | 49 | - 5 | 5 | | | Najas flexilis | bushy naiad | 16 | 16 | 30 | 29 | | | Najas guadalupensis | southern naiad | 11 | 11 | 99 | 97 | | | Najas minor | minor naiad | 5 | 5 | 16 | 16 | | | Nitella flexilis | stonewort | 0 | 0 | 1 | 1 | | | Nitellopsis obstusa | starry stonewort | 0 | 0 | 1 | 1 | | | Nuphar advena | yellow water lily | 0 | 0 | 0 | 0 | | | Nymphaea odorata | white water lily | 1 | 1 | 1 | 1 | | | Potamogeton amplifolius | wideleaf pondweed | 0 | 0 | 0 | 0 | | | Potamogeton crispus | curly-leaf pondweed | 19 | 19 | 43 | 42 | | | Potamogeton diversifolius | water-thread pondweed | 0 | 0 | 0 | 0 | | | Potamogeton foliosus | leafy pondweed | 27 | 26 | 10 | 10 | | | Potamogeton praelongus | tall pondweed | 0 | 0 | 0 | 0 | | | Potamogeton pusillus | small pondweed | 0 | 0 | 38 | 37 | | | Potamogeton robbinsii | Robbin's pondweed | 0 | 0 | 5 | 5 | | | Potamogeton zosteriformis | flatstem pondweed | 1 | 1 | 0 | 0 | | | Ranunculus trichophyllus | water buttercup | 0 | 0 | 3 | 3 | | | Stuckenia pectinata | sago pondweed | 1 | 1 | 0 | 0 | | | Vallisneria americana | water celery | 8 | 8 | 16 | 16 | | | Zosterella dubia | water stargrass | 1 | 1 | 1 | 1 | | | Total occurrences, at all SP's, of all species | | 167 | | 421 | | | | From Johnson et al. 2000 (Cornell) | | | | | | | From Johnson et al. 2008 (Cornell) #### Lamoka Lake Species Occurrences Original 169 sites Native species per site 2000: 2.79 2006: 5.56 2008: 5.36 | 6 | C N | 2006 | | 2008 | | |--------------------------------------|---------------------------|-----------|----|---------------|----| | Scientific Name | Common Name Littoral Zone | | | Littoral Zone | | | | | (in 2000) | | (in 2000) | | | | | FREQ | % | FREQ | % | | Azolla caroliniana | Carolina mosquito fern | 0 | 0 | 4 | 2 | | Brasenia schreberi | water shield | 2 | 1 | 2 | 1 | | Ceratophyllum demersum | coontail, hornwort | 140 | 83 | 152 | 90 | | Chara vulgaris | chara, muskgrass | 16 | 9 | 10 | 6 | | Elodea canadensis | elodea | 106 | 63 | 107 | 63 | | Lemna minor | small duckweed | 77 | 46 | 20 | 12 | | Lemna trisulca | star duckweed | 52 | 31 | 65 | 38 | | Megalodonta beckii | water marigold | 8 | 5 | 6 | 4 | | Myriophyllum spicatum | Eurasian watermilfoil | 153 | 91 | 67 | 40 | | Najas flexilis | bushy naiad | 7 | 4 | 3 | 2 | | Najas guadalupensis | southern naiad | 66 | 39 | 79 | 47 | | Nitella flexilis | nitella, stonewort | 0 | 0 | 9 | 5 | | Nuphar advena | yellow water lily | 23 | 14 | 31 | 18 | | Nymphaea odorata | white water lily | 28 | 17 | 12 | 7 | | Potamogeton amplifolius | large-leaf pondweed | 20 | 12 | 37 | 22 | | Potamogeton crispus | curly-leaf pondweed | 18 | 11 | 41 | 24 | | Potamogeton foliosus | leafy pondweed | 2 | 1 | 0 | 0 | | Potamogeton hillii | Hill's pondweed | 3 | 2 | 0 | 0 | | Potamogeton ???? | ? hybrid ? | 0 | 0 | 1 | 1 | | Potamogeton nodosus | long-leaf pondweed | 0 | 0 | 1 | 1 | | Potamogeton pusillus | small pondweed | 1 | 1 | 3 | 2 | | Potamogeton praelongus | white-stem pondweed | 0 | 0 | 0 | 0 | | Potamogeton robbinsii | Robbin's pondweed | 81 | 48 | 107 | 63 | | Potamogeton zosteriformis | flat-stem pondweed | 55 | 33 | 53 | 31 | | Polygonum amphibium | water smartweed | 3 | 2 | 4 | 2 | | Ranunculus trichophyllus | water buttercup | 50 | 30 | 48 | 28 | | Stuckenia pectinata | sago pondweed | 1 | 1 | 1 | 1 | | Spirodela polyrhiza | great duckweed | 48 | 28 | 22 | 13 | | Typha latifolia | broad-leaved cattail | 4 | 2 | 1 | 1 | | Utricularia sp. | bladderwort | 11 | 7 | 34 | 20 | | Vallisneria americana | eel grass, wild celery | 52 | 31 | 51 | 30 | | Wolffia columbiana | common watermeal | 33 | 20 | 10 | 6 | | Zanichellia palustris | horned pondweed | 0 | 0 | 0 | 0 | | Zosterella dubia | water stargrass | 50 | 30 | 32 | 19 | | Total species occurrence for all SPs | | 1110 | | 1013 | | ## Renovate OTF Use for EWM - Future Operational Considerations: - Dissipation pattern of large treatments, irrigation restrictions, and duration of control - Site-specific recommendations for optimal selectivity on potentially sensitive, non-target aquatic plants - Integration with other herbicides for enhanced spectrum of exotic weed control ## Summary - Highly successful, selective control of EWM was observed in all three NY lakes in 2008. - Granular OTF formulation has unique dissipation characteristics favorable for shoreline treatments. - Selectivity and performance of Renovate OTF in two years of operational use confirm fit for EWM management in the NE US. ## Acknowledgements - Aquatic Control Technology - Allied Biological - Darrin Fresh Water Institute - Cornell University - Saratoga Lake Association and Saratoga Lake Protection and Improvement District - Lamoka Waneta Lake Association - NYSDEC - All others who have worked hard to see successful invasive species management in these lakes.